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ON THE COMPUTATIONAL CAPABILITIES OF PHYSICAL SYSTEMS

PART I: THE IMPOSSIBILITY OF INFALLIBLE COMPUTATION

 by David H. Wolpert

NASA Ames Research Center, N269-1, Moffett Field, CA 94035, dhw@ptolemy.arc.nasa

PACS numbers: 02.10.By, 02.60.Cb, 03.65.Bz

Abstract: In this first of two papers, strong limits on the accuracy of physical computation

established. First it is proven that there cannot be a physical computer C to which one can

any and all computational tasks concerning the physical universe. Next it is proven that no p

cal computer C can correctly carry out any computational task in the subset of such tasks th

be posed to C. This result holds whether the computational tasks concern a system that is

cally isolated from C, or instead concern a system that is coupled to C. As a particular exa

this result means that there cannot be a physical computer that can, for any physical system

nal to that computer, take the specification of that external system’s state as input and the

rectly predict its future state before that future state actually occurs; one cannot build a ph

computer that can be assured of correctly “processing information faster than the universe

The results also mean that there cannot exist an infallible, general-purpose observation app

and that there cannot be an infallible, general-purpose control apparatus. These results do

on systems that are infinite, and/or non-classical, and/or obey chaotic dynamics. They als

even if one uses an infinitely fast, infinitely dense computer, with computational powers gr

than that of a Turing Machine. This generality is a direct consequence of the fact that a nove

inition of computation — a definition of “physical computation” — is needed to address

issues considered in these papers. While this definition does not fit into the traditional Cho
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the mathematics of the Chomsky hierarchy. The second in this pair of papers presents a p

nary exploration of some of this mathematical structure, including in particular that of predic

complexity, which is a “physical computation analogue” of algorithmic information complexity

is proven in that second paper that either the Hamiltonian of our universe proscribes a certa

of computation, or prediction complexity is unique (unlike algorithmic information complexi

in that there is one and only version of it that can be applicable throughout our universe.



3

mputa-

one

g com-

limits

se) by

any,

first of

ch one

puter-

s infor-

r that

re that

the

n the

ideas

there

ense,

could

e uni-

st as it

el of
INTRODUCTION

Recently there has been heightened interest in the relationship between physics and co

tion ([1-33]). This interest extends far beyond the topic of quantum computation. On the

hand, physics has been used to investigate the limits on computation imposed by operatin

puters in the real physical universe. Conversely, there has been speculation concerning the

imposed on the physical universe (or at least imposed on our models of the physical univer

the need for the universe to process information, as computers do.

To investigate this second issue one would like to know what fundamental distinctions, if

there are between the physical universe and a physical computer. To address this issue this

a pair of papers begins by establishing that the universe cannot contain a computer to whi

can pose any arbitrary computational task. Accordingly, this paper goes on to consider com

indexed subsets of computational tasks, where all the members of any such subsetcanbe posed to

the associated computer. It then proves that one cannot build a computer that can “proces

mation faster than the universe”. More precisely, it is shown that one cannot build a compute

can, for any physical system, correctly predict any aspect of that system’s future state befo

future state actually occurs. This is true even if the prediction problem is restricted to be from

set of computational tasks that can be posed to the computer.

This asymmetry in computational speeds constitutes a fundamental distinction betwee

universe and the set of all physical computers. Its existence casts an interesting light on the

of Fredkin, Landauer and others concerning whether the universe “is” a computer, whether

are “information-processing restrictions” on the laws of physics, etc. [10, 19]. In a certain s

the universe is more powerful than any information-processing system constructed within it

be. This result can alternatively be viewed as a restriction on the universe as a whole — th

verse cannot support the existence within it of a computer that can process information as fa

can.

To establish this result concerning prediction of the future this paper considers a mod
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computation which is actually general enough to address the performance of other comput

tasks as well as prediction of the future. In particular, this result does not rely on temporal o

ings of events, and therefore also establishes that no computer can infallibly predict thepast(i.e.,

perform retrodiction). So any memory system must be fallible; the second law cannot be u

ensure perfectly faultless memory of the past. Accordingly, the psychological arrow of time i

inviolate [24].1 The results are also general enough to allow arbitrary coupling of the comp

and the external universe. So for example they also establish that there cannot be a device

take the specification of any characteristic of the external universe as input and then co

observe the value of that characteristic. Similarly, they establish that here cannot be a devi

can take the specification of any desired value of a characteristic of the external universe a

and then induce that value in that characteristic. In other words, loosely speaking, there can

either an infallible general purpose control device nor an infallible general purpose control de

(This second interpretation can be viewed as an uncertainty principle that does not involve

tum mechanics.)

There are a number of previous results in the literature related to these results of this

Many authors have shown how to construct Turing Machines out of physical systems (se

example [10, 22] and references therein). By the usual uncomputability results, there are p

ties of such systems that cannot be calculated on a physical Turing machine within a fixed

ment of time (assuming each step in the calculation takes a fixed non-infinitesimal time

addition, there have been a number of results explicitly showing how to construct physica

tems whose future state is non-computable, without going through the intermediate step of

lishing computational universality [13, 23].

There are several important respects in which the results of this paper extend this pre

work. All of these previous results rely on infinities of some sort in physically unrealizable

tems (e.g., in [23] an infinite number of steps are needed to construct the physical system

future state is not computable). In addition, they all assume one’s computing device is no

powerful than a Turing machine. Also none of them are motivated by scenarios where the co



5

ted by

. Nor

rse, as

not

uting

As

7]).

r, no

in this

which

ute a

hich

nfinite

itly

hold

igital

t (i.e.,

gard-

hys-

wer

r. As a

man

some

issue
tation is supposed to be a prediction of the future; in fact, they are not in any sense motiva

consideration of the temporal relation between one’s information and what is to be predicted

are they extendable to allow arbitrary coupling between the computer and the external unive

(for example) in the processes of observation and control.

There are other limitations that apply to many of these previous results individually, while

applying to each and every one of them. For example, in [23] it is crucial that we are comp

an infinite precision real number rather than a “finite precision” quantity like an integer.

another example, many of these previous results explicitly require chaotic dynamics (e.g., [

None of the limitations delineated above apply to the result of this paper. In particula

physically unrealizable systems, chaotic dynamics, or non-classical dynamics are exploited

paper. The results also hold even if one restricts attention to systems which are finite, i.e.,

contain a finite number of degrees of freedom. In all this, the results of this paper constit

novel kind of physical unpredictability.

The results also hold even if the computer is infinitely dense and/or infinitely fast (in w

case the speed of light would be infinite). The results also hold even if the computer has an i

amount of time to do the calculation. They also hold even if the computer’s initial input explic

contains the correct value of the variable it is trying to predict, and more generally they

regardless of the program running on the computer. They also hold for both analog and d

computation, and whether or not the computer’s program can be loaded into its own inpu

regardless of the computational universality of the computer). Moreover, the results hold re

less of the power of one’s computer, so long as it is physically realizable. If it turns out to be p

ically possible to have infinitely fast, infinitely dense computers, with computational po

greater than that of a Turing machine, then the result of this paper holds for such a compute

particular example, the results also hold even if the “computer” includes one or more hu

beings. So even if Penrose’s musing on quantum gravity and intelligence turns out to have

validity, it is still true that human intelligence isguaranteed to be wrong sometimes.

The way that this paper derives results of such generality is to examine the underlying
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from the broad perspective of the computational character of physical systems in general,

than that of some single precisely specified physical system. The associated mathematics d

directly involve dynamical systems like Turing machines. Rather it casts computation in term

partitions of the space of possible worldlines of the universe. For example, to specify what in

particular physical computer has at a particular time is to specify a particular subset of all po

worldlines of the universe; different inputs to the computation correspond to different such

sets. Similar partitions specify outputs of a physical computer. Results concerning the (im)p

bility of certain kinds of physical computation are derived by considering the relation

between these kinds of partitions. In its being defined in terms of such partitions, “physical

putation” involves a structure that need not even be instantiated in some particular phys

localized apparatus; the formal definition of a physical computer is general enough to also in

more subtle non-localized dynamical processes unfolding across the entire universe.

Section 1 of this paper generalizes from particular instances of real-world physical comp

that try to “reliably and ahead of time predict the future state of any system” to motivate a b

formal definition of such computers in terms of partitions. To maintain maximum breadth o

analysis, we do not want to restrict attention to physical computers that are (or are not) capa

self-reference. As an alternative, as elaborated at the end of Section 1, we restrict attention

verses containing at least two such physical computers. (Put another way, our results hold f

single computer not so powerful as to preclude the possible existence anywhere else in th

verse of another computer as powerful as it is — which certainly describes any compute

human beings can ever create.) Section 2 begins by proving that there exist prediction pro

that cannot even be posed to one of those two physical computers. Restrictions on the set

diction problems are introduced accordingly. Section 2 then proves that, even within su

restricted set of prediction problems, one cannot have a pair of computers each of which ca

ably and ahead of time, predict the future state of any system. This is even true if one allow

possibility that the computer is initialized by having the correct prediction provided to it.

In their most abstract formulation, the results of this section concern arbitrary calculatio
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computer might make concerning the physical universe, not just “predictions” per se. This is

they also establish (for example) the necessarily fallible nature of retrodiction, of observation

of control. These results are all derived through what is essentially a physical version of a C

Liar’s paradox; they can be viewed as a physical analogue of Godel’s Incompleteness The

involving two instances of the putative computer rather than self-referential computers.

These issues are addressed in the second of these two papers which, while building

results of the first paper, is meant to be self-contained. The second papers begins with a c

review of these partition-based definitions and results of the first paper. Despite its being d

from the mathematics of the Chomsky hierarchy, as elaborated in that paper, the mathemat

impossibility results governing these partitions bears many parallels with that of the Cho

hierarchy. Section 2 of that second paper explicates some of that mathematical structure,

ing topics ranging from error correction to the (lack of) transitivity of computational predictab

across multiple distinct computers. In particular, results are presented concerning physica

putation analogues of the mathematics of Turing machines, e.g., “universal” physical comp

and Halting theorems for physical computers. In addition, an analogue of algorithmic inform

complexity, “prediction complexity”, is elaborated. A task-independent bound is derived on

much the prediction complexity of a computational task can differ for two different reference

versal physical computers used to solve that task. This bound is similar to the “encoding” b

governing how much the algorithmic information complexity of a Turing machine calculation

differ for two reference universal Turing machines. It is then proven that one of two cases

hold. One is that the Hamiltonian of our universe proscribes a certain type of computation

other possibility is that, unlike conventional algorithmic information complexity, its physi

computation analogue is unique, in that there is one and only version of it that can be appl

throughout our universe.

Throughout these papers,B ≡ {0, 1}, ℜ is defined to be the set of all real numbers, ‘^’ is th

logical andoperator, and ‘NOT’ is the logicalnot operator applied toB. To avoid proliferation of

symbols, often set-delineating curly brackets will be used surrounding a single symbol, in w
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case that symbol is to taken to be a variable with the indicated set being the set of all values

variable. So for example “{y}” refers to the set of all values of the variable y. In addition o(A

the cardinality of any set A, and 2A is the power set of A. u∈ U are the possible states of the un

verse, and
^
U is the space of allowed trajectories through U. Soû ∈ ^

U is a single-valued map from

t ∈ ℜ to u ∈ U, with ut ≡ ût the state of the universe at time t. Note that since the univers

microscopically deterministic, ut for any t uniquely specifies
^
u. Sometimes there will be implicit

constraints on
^
U. For example, we will assume in discussing any particular computer that

space
^
U is restricted to worldlineŝu that contain that computer. An earlier analysis address

some of the issues considered in this pair of papers can be found in [30].

I. A DEFINITION OF WHAT IT MEANS TO “PREDICT THE FUTURE”

i) Definition of a Physical Computer

For the purposes of this paper, a physical computer will “predict the state of a system ah

time” if the computer is a general emulator of the physical dynamics of such a system, an e

tor that operates faster than that dynamics. So given some time T > 0, and given some d

information concerning the state of some system at T, our goal is to have the computer outp

desired informationbefore time T. To that end we allow the computer to be “initialized” at time

with different “input”, depending on the value of T, what information is desired, perhaps infor

tion about the current state of the state whose future is being predicted, etc.

To make this concrete, we start by distinguishing the specification of what we want the

puter to calculate from the results of that calculation. Letα be the value of a variable delineatin

some information concerning the state of the physical universe at time T (e.g., the value

finite set of bits concerning the state of a particular system S residing in the universe at that

We indicate a specification that we wish to knowα as aquestionq ∈ Q. So q says whatα is for

any state of the universe at time T. This means that what we wish our computer to tell us
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result of q, a single-valued mapping from the state of the universe at T toα.

Since û fixes uT and (for a deterministic universe) vice-versa, we can generalize this by

pensing with specification of T. In other words, we can recast any q as any single-valued ma

from û toα. So q fixes a partition over the space
^
U, and any pair (α, q) delineates a region in

^
U.

In general, the space {α} of “potential answers” of the universe (i.e., the set of partition el

ment labels) can change depending on q, the “question concerning the universe” (i.e., the

tion). We will write the space {α} as A(q) when we need to indicate that dependence explici

We formalize all this as follows:

Definition 1: Any questionq ∈ Q is a pair, consisting of a set A ofanswersand a single-valued

function from ^u ∈ ^
U to α ∈ A. A(q) indicates the A-component of the pair q.

Here we restrict attention to Q that are non-empty and such that there exist at least two ele

in A(q) for at least one q∈ Q. We make no othera priori assumptions concerning the spac

{A(q ∈ Q)} and Q. In particular, we make no assumptions concerning their finiteness.

Without the accompanying q, a value ofα, by itself, is meaningless. So we must know what

was when we read the computer’s output. Accordingly, we take the output of our computer to

question q together with an associated prediction forα. (If the question is only stored in a huma

user’s memory, then that aspect of the human is implicitly part of the computer.) So our

puter’s output is a delineation of a subregion ofû ∈ ^
U; thoseû such that q(̂u ) = α. Choose some

real numberτ, where 0 <τ < T. Our goal is that for any q∈ Q there is an associated initial “input”

state of the computer which ensures that at timeτ our computer’s output is a correct prediction fo

α, in that for thêu of the universe, q(̂u ) =α.

Example 1 (conventional prediction of the future):Say that our universe contains a system

external to our computer that is closed in the time interval [0, T], and let u be the values of th

ments of a set of canonical variables describing the universe.α is the t = T values of the compo-
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nents of u that concern S, measured on some finite grid G of finite precision. q is this definiti

α with G and the like fully specified. (So q is a partition of the space of possible uT, and therefore

of
^
U, andα is an element of that partition.) Q is a set of such q’s, differing in G, whose assoc

answers our computer can (we hope) predict correctly.

The input to the computer is implicitly reflected in itst = 0 physical state, as our interpretatio

of that state. In this example (though not necessarily in general), that input specifies what qu

we want answered, i.e., which q and associated T we are interested in. It also delineates

several regions R⊆ ^
U, each of which, intuitively, gives the t = 0 state of S. Throughout each s

R, the system S is closed from the rest of the universe during t∈ [0, T]. The precise R delineated

further specifies a set of possible values of u0 (and therefore of the Hamiltonian describing S), fo

example by being an element of a (perhaps irregular) finite precision grid over U0, G'. If, for some

R, q( û ) has the same value for allû ∈ R, then this input R uniquely specifies whatα is for any

associated̂u. If this is not the case, then the R input to the computer does not suffice to an

question q. So for any q and region R both of which can be specified in the computer’s inp

must be a subset of a region q-1(α) for someα.

Implicit in this definition is some means for correctly getting the information R into the co

puter’s input. In practice, this is often done by having had the computer coupled to S som

before time 0. As an alternative, rather than specify R in the input, we could have the input co

a “pointer” telling the computer where to look to get the information R. (The analysis of th

papers holds no matter how the computer gains access to R.) In addition, in practice the inpu

ing R, q, and T, is an element of a partition over an “input section” of our computer. In su

case, the input is itself an element of a finite precision grid over^U, G". So an element of G" spec

ifies an element of G (namely q) and element of G' (namely R.)

Given its input, the computer (tries to) form its prediction forα by first running the laws of

physics on a u0 having the specified value as measured on G', according to the specified Ham

nian, up to the specified time T. The computer then applies q(.) to the result. Finally, it writes

prediction forα onto its output and halts. (More precisely, using some fourth finite precision
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G"' over its output section, it “writes out” (what in interpret as) its prediction for what region in

the universe will be in at T, that prediction being formally equivalent to a prediction of a reg

in
^
U.) The goal is to have it do this, with the correct value ofα, by timeτ < T.

Consider again the case where there is in fact a correct prediction, i.e., where R is ind

subset of the region q-1(α) for someα. For this case, formally speaking, “all the computer has

do” in making its prediction is recognize which such region in the partition q that is input to

computer contains the region R that is also input to the computer. Then it must output the la

that region in q. In practice though, q and R are usually “encoded” differently, and the com

must “translate” between those encodings to recognize which region q-1(α) contains R; this trans-

lation constitutes the “computation”.

Consider a conventional computer that consists of a fixed physical dynamical system tog

with a pair of mappings by which some of that system’s observable degrees of freedom are

preted as (perhaps binary) “inputs”, and some as “outputs”. More precisely, certain characte

of the degrees of freedom of the computer — like whether they exceed a pre-specified thre

in the case of a digital computer — are interpreted that way. The input and output degrees o

dom can overlap, and may even be identical. Since the computer exists in the physical unive

state is specified by u. Therefore both the interpretation of some of the computers degrees o

dom as “inputs” and some as “outputs” is equivalent to a mapping from u∈ U to a space of inputs

and of outputs, respectively. All of this holds whether the computation of the outputs from

inputs proceeds in a “digital” or “analog” fashion.

Under the convention that the initialization of the computer occurs at t = 0, sinceû fixes u0

and vice-versa, we can broaden the definition of a computer’s input, to be a mapping fromû ∈ ^
U

to a space of inputs. So for example “initialization” of a computer as conventionally conce

which sets the t = 0 state of a physical system underlying the computer, is simply a special c

that special case, the value taken by the input mapping can differ forû andû' only if the t = 0 state

of the computer portion of the universe, as specified byû, differs from the t = 0 state of the com
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puter portion of the universe as specified byû'. Similarly, under the convention thatτ is fixed, we

can broaden the definition of a computer’s output to be a mapping fromû ∈ ^
U to a space of out-

puts.

We define a computer by formalizing these considerations:

Definition 2: i) A (computation)partition is a set of disjoint subsets of^u whose union equals^U,

or equivalently a single-valued mapping from
^
U into a non-empty space of partition-elemen

labels. Unless stated otherwise, any partition is assumed to contain at least two elements.

ii) In an output partition, the space of partition element labels is a space of possible “outpu

{OUT}.

iii) In the current context, where we are interested in prediction, we require {OUT} to be

space of all pairs {OUTq ∈ Q, OUTα ∈ A(OUTq)}, for some Q and A(.) as defined in Def. (1)

This space — and therefore the associated output partition — is implicitly a function of Q

make this explicit, often, rather than an output partition, we will consider the full associated

ble (Q, OUT(.)), where OUT(.) is the output partitionû ∈ ^
U → OUT ∈ {OUTq ∈ Q, OUTα ∈

A(OUTq)}. Also, we will find it useful to use an output partition to define an associated (“predic-

tion”) partition, OUTp(.) :
^u → (A(OUTq(

^u ), OUTα( ^u )).

iv) In an input partition, the space of partition element labels is a space of possible “inpu

{IN}.

v) A (physical) computerconsists of an input partition and an output partition double. Unl

explicitly stated otherwise, both of those partitions are required to be (separately) surjective

Since we are restricting attention to non-empty Q, {OUT} is non-empty. We say that OUTq is

the “question posed to the computer”, and OUTα is “the computer’s answer”. The surjectivity o

IN(.) and OUT(.) is a restriction on {IN} and {OUT}, respectively. It reflects the fact that, for re

sons of convenience, we don’t allow a value to “officially” be in the space of the compu

potential inputs (outputs) if there is no state of the computer that corresponds to that input
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put). For example, if the computer is a digital workstation with a kilobyte of its RAM set asid

input, it makes no sense to have the input space contain more than (28)1024 values.

While motivated in large measure by the task of predicting the future, the definition of ph

cal computation is far broader, concerning any computation that can be cast in terms of i

questions about physical states of nature, and associated answers. This set of questions inc

particular any calculation that can be instantiated in a physical system in our universe, wh

that question is a “prediction” or not. All such physically realizable calculations are subject to

results presented below.

Even in the context of prediction though, the definition of a physical computer presented

is much broader than computers that work by the process outlined in Ex. 1 (and therefo

associated theorems are correspondingly further-ranging in their implications). For examp

computer in Ex. 1 has the laws of physics explicitly built into its “program”. But our definiti

allows other kinds of “programs” as well. Our definition also allows other kinds of informat

input to the computer besides q and a region R (which together with T constitute the inputs i

example above). We will only need to require that there besomet = 0 state of the computer that

by accident or by design, induces the correct prediction at t =τ. This means we do not even

require that the computer’s initial state IN “accurately describes” the t = 0 external universe in any

meaningful sense. Our generalization of Ex. 1 preserves analogues of the grids G (in Q(.)),

IN(.)) and G"' (in OUT(.)), but not of the grid G'.

In fact, our formal definition of a physical computer broadens what we mean by the “inp

the computer”, IN, even further. While the motivation for our definition, exemplified in Ex. 1,

the partition IN(.) “fix the initial state of the computer’s inputs section”, that need not be the c

IN(.) can reflectany attributes of^u. An “input” — an element of a partition of
^
U — need not

even involve the t = 0 state of the physical computer. In other words, as we use the terms he

computer’s “input” need not be specified in some t = 0 state of a physical device. Indeed, ou

inition does not even explicitly delineate the particular physical system within the universe

we identify with the computer. (A physical computer is simply an input partition together with
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output partition.) This means we can even choose to have the entire universe “be the com

For our purposes, we do not need tighter restrictions in our definition of a physical comp

Nonetheless, a pedagogically useful example is any localized physical device in the real

meeting our limited restrictions. No matter how that device works, it is subject to the impossib

results described below.

We can also modify the example presented above in other ways not involving input. For e

ple, we can have T < 0, sothat the “prediction” is of the past. We can also have S be open (or

haps even be the entire universe), etc. Although prediction of the future is an important

pedagogically useful) special case, our results hold more generally for any calculation a ph

computer might undertake.

As a final example of the freedom allowed by our definition, consider again conventi

computation, where both the input and output mappings reflect the state of the portion of th

verse consisting of some physical system underlying the computer. Now in practice we may

to physically couple such a computer to the external universe, for example via an obser

apparatus that initializes the computer’s inputs so that they reflect information about the s

being predicted. Such a coupling would be reflected inû. If we wish though, we can exploit the

freedom in its definition to modify the input mapping, in such a way that it too directly refle

this kind of coupling. For example, under the proposed modification, if we want the input se

of the computer’s underlying physical system to be a bit b1 that equals the t = -1 state of some b

b2 concerning the external universe, then we could have IN(û ) = IN(b1(u0), b2(u-1)) = b1(u0) if

b1(u0) = b2(u-1), and have it equal a special “input error” value otherwise. If we do have a phys

coupling mechanism, and if that mechanism is reliable — something reflected inû — then this

third setting will never occur, and we can ignore it. However use of this modified IN allows u

avoid explicitly identifying such a mechanism and simply presume its existence. So long a

third setting never occurs, we can analyze the systemas thoughit had such a (reliable) physica

coupling mechanism.

We will sometimes find it useful to consider a “copy” of a particular computer C. Intuitive



15

the

-output

o

stem

.

future

the

ing

al sys-

of the

ring

ation

there

lf-
this is any computer C' where the logical implications relating values of IN' and OUT' are

same as those relating values IN and OUT, so that both computers have the same input

mapping.

Definition 2 (v): Given a computer C≡ {Q, IN, OUT}, define theimplication in {OUT} of any

value IN∈ {IN} to be the set of all OUT∈ {OUT} consistent with IN, in that∃ ^u ∈ ^U for which

both IN( ^u ) = IN andOUT( ^u ) = OUT. Then the computer C2 ≡ {Q2, IN2, OUT2} is a copyof the

computer C1 ≡{Q1, IN1, OUT1} iff Q 2 = Q1, {IN 2} = {IN 1} ≡ {IN}, {OUT 2} = {OUT 1}, and the

implication in {OUT2} of any IN ∈ {IN} is the same as the implication in {OUT1} of that IN.

Note that we don’t require that IN1(.) = IN2(.) in the definition of a copy of a computer; the tw

computers are allowed to have different input values for the same^u. Conversely, any computer is

a copy of itself, a scenario in which IN1(.) does equal IN2(.).

ii) Intelligible computation

Consider a “conventional” physical computer, consisting of an underlying physical sy

whose t = 0 state sets IN(û ) and whose state at timeτ sets OUT(̂u ), as in our example above

We wish to analyze whether the physical system underlying that computer can calculate the

sufficiently quickly. In doing so, we do not want to allow any of the “computational load” of

calculation to be “hidden” in the mappings IN(.) and OUT(.) by which we interpret the underly

physical system’s state, thereby lessening the computational load on that underlying physic

tem. Stated differently, we wish both the input and the output corresponding to any state

underlying physical system to be “immediately and readily intelligible”, rather than requi

non-trivial subsequent computing before it can be interpreted. As will be seen in our formaliz

of this requirement, it is equivalent to stipulating that our computer be flexible enough that

are no restrictions on the possible questions one can pose to it.

One way to formalize this intelligibility constraint would entail imposing capabilities for se



16

ysical

inputs

con-

ques-

hout

that

at

ertain

ontain

puter

ers be

nd

ty
reference onto our computer. This has the major disadvantage of restricting the set of ph

computers under consideration. As an alternative, to formalize the notion that a computer’s

and outputs be “intelligible”, here we consider universes having another computer which can

sider the first one. We then require that that second computer be able to directly pose binary

tions about whether the first computer’s prediction correctly corresponds to reality, wit

relying on any intervening “translational” computer to interpret that first computer. (Note

nothing is being said about whether such a question can be correctlyansweredby the second

computer, simply whether it can beposedto that computer.) So we wish to be able to ask if th

output is one particular value, whether it is another particular value, whether it is one of a c

set of values, etc. Intuitively, this means that the set Q for the second computer must c

binary functions of OUT(.) of the first computer. Finally, we also require that the second com

be similarly intelligible to the first one.

These two requirements are how we impose the intuitive requirement that both comput

“readily intelligible” as predictions concerning reality; they must be readily intelligible a

checkableto each other. They are formalized and generalized as follows:

Definition 3: Consider a physical computer C≡ (Q, IN(.), OUT(.)) and a^U-partitionπ. A func-

tion from
^
U into B, f, is anintelligibility function (for π) if

∀ û, û' ∈ ^
U, π( û ) =π( û' ) ⇒ f( û ) = f( û' ).

A set F of such intelligibility functions is anintelligibility set for π.

We view any intelligibility function as a question by defining A(f) to be the image of^U under

f. If F is an intelligibility set forπ and F⊆ Q, we say thatπ is intelligible to C with respect to F. If

the intelligibility set is not specified, it is implicitly understood to be the set of all intelligibili

functions forπ.

We say that two physical computers C1 and C2 aremutually intelligible(with respect to the

pair {Fi}) iff both OUT2 is intelligible to C1 with respect to F2 and OUT1 is intelligible to C2 with

respect to F1.
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Plugging in,π is intelligible to C iff ∀ intelligibility functions f, ∃ q ∈ OUTq such that q = f, i.e.,

such that A(q) = the image of^U under f, and such that∀ û ∈ ^
U, q( û ) = f( û ). Note that sinceπ

contains at least two elements, ifπ is intelligible to C,∃ OUTq ∈ {OUTq} such that A(OUTq) =

B, an OUTq such that A(OUTq) = {0}, and one such that A(OUTq) = {1}. Usually we are inter-

ested in the case whereπ is an output partition of a physical computer, as in mutual intelligibil

Intuitively, an intelligibility function for a partitionπ is a mapping from the elements ofπ into

B. π is intelligible to C if Q contains all binary-valued functions ofπ, i.e., if C can have posed any

question concerning the universe as measured onπ. This flexibility in C ensures that C’s outpu

partition isn’t “rigged ahead of time” in favor of some particular question concerningπ. Formally,

by the surjectivity of OUT(.), demanding intelligibility implies that∃ ^u' ∈ ^
U such that∀ ^u ∈ ^

U,

[OUTq(
^u' )]( ^u ) = f( ^u ).

In conventional computation IN(.) specifies the question q∈ Q we want to pose to the com

puter (see the example above). In such scenarios, mutual intelligibility restricts how much co

tation can be “hidden” in OUT2(.) and IN1(.) (OUT1(.) and IN2(.), respectively) by coupling them

so that subsets of the range of OUT2(.) are, directly, elements in the range of IN1(.), without any

intervening computational processing.

More prosaically, to motivate intelligibility we can simply note that we wish to be able to p

to C1 any prediction question we can formulate. In particular, this means we wish to be ab

pose to C1 any questions concerning well-defined aspects of the future state of C2. Now consider

having C2 be a conventional computer based on an underlying physical system. Then we w

be able to predict C2’s output at timeτ as OUT2(uτ). Therefore in addition to any other question

we might want to be able to pose to it, we want to be able to pose to C1 questions involving the

value OUT2(uτ) (e.g., is that value x1? x1 or x2? x1 or x3? etc.). This is equivalent to requiring

intelligibility.

iii) Predictable computation
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We can now formalize the concept of a physical computer’s “making a correct predic

concerning another computer’s future state. We do this as follows:

Definition 4: Consider a physical computer C, partitionπ, and intelligibility set forπ, F. We say

thatπ is weakly predictable to C with respect to F iff:

i) π is intelligible to C with respect to F, i.e., F⊆ OUTq ;

ii) ∀ f ∈ F, ∃ IN ∈ {IN} that weakly induces f, i.e., an IN such that:

IN(
^
u )  =  IN

⇒

OUTp( û )  =  (A(OUTq(
^u )), OUTα( ^u ))  =  (A(f), f( û )).

Intuitively, condition (ii) means that for all questions q in F, there is an input state such that if

initialized to that input state, C’s answer to that question q (as evaluated atτ) must be correct. We

will say a computer C' with output OUT'(.) is weakly predictable to another if the partit

OUT'p(.) is. If we just say “predictable” it will be assumed that we mean weak predictability.

This definition of predictable is extremely weak. It only concerns those q∈ Q that are in F.

Also, it doesn’t even require that there be a sense in which the information input to C is inte

able as a description of the external universe. (This freedom is what allows us to avoid form

ing the concept of whether some input does or does not “correctly describe” the ext

universe.) Furthermore, even if the input is interpretable that way, we don’t require that it be

rect. As an example of this, as in conventional computation {IN} could consist of specification

t = 0 states of some system S whose future we want to predict, i.e., IN(.) maps the t = 0 sta

physical system underlying our computer to the space of possible t = 0 states of S. But noth

the definition of ‘predictable’ requires that IN(
^
u ) correctly specifies the values of those initia

conditions of S; all that matters is that the resulting prediction be correct. Indeed, we don’t

require that OUTq( û ) = q. Even if thecomputer gets confused about what question it’s answ

ing, we give it credit if it comes up with the correct answer to our question. In addition, we do
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even require that the value IN uniquely fixes OUTα( û ). There may be twôu’s both consistent

with IN that nonetheless have different OUTα( û ) (and therefore correspond to different values

q).

Finally, note that none of the times 0,τ or T occur in the definition of ‘predictable’ or in any o

the terms going into that definition. Although we motivated the definition as a way to analyze

diction of the future, it actually encompasses a much broader range of kinds of computatio

although our results below do govern prediction of the future, they have many other ramific

as well. Most generally, they govern issues concerning sets of potential properties of the

verse’s history. In particular, they govern whether one can always restrict that history tog

with the state of a “computer”, itself specified in that history, so that that computer corre

guesses which of the properties actually holds. (In this, although it is pedagogically helpful, u

the term “prediction” is a bit misleading.)

Even when there is temporal ordering of inputs, outputs, and the prediction involved in

computation, they need not have T >τ > 0. We could just as easily have T <τ < 0 or even T < 0 <

τ. So the results presented below will establish the uncomputabilityof the pastas well as of the

future. They also can be viewed as establishing the fallibility of any observation apparatus a

any control apparatus. These points will be returned to below.

As a formal matter, note that in the definition of predictable, even though f(.) is surjective

A(f) (cf. Def. 3), it may be that for some IN, the set of values f(^u ) takes on when^u is restricted

so that IN( ^u ) = IN do not cover all of A(f). The reader should also bear in mind that by surjec

ity, ∀ IN ∈ {IN}, ∃ û ∈ ^U such that IN(̂u ) = IN.

iv) Distinguishable computers

There is one final definition that we need before we can establish our unpredictability re

In our analysis below we will need to have a formal definition of what we mean by having

separate physical computers. The basic idea behind this definition is that just as we require

input values IN∈ {IN} are physically realizable states of a single physical computer, so all p
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of the two computer’s inputs values must be physically realizable states of the two physical

puters. Intuitively, the computers are not so intertwined that how we can initialize one of the

determined by how we initialize the other. We formalize this as follows:

Definition 5: Consider a set of n physical computers {Ci ≡ (Qi, INi(.), OUTi(.)) : i = 1, ..., n}. We

say {Ci} is ( input) distinguishableiff ∀ n-tuples (IN1 ∈ {IN 1}, ..., INn ∈ {IN n}), ∃ û ∈ ^
U such

that∀ i, INi( û ) = INi simultaneously.

We say that {Ci} is pairwise(input) distinguishableif any pair of computers from {Ci} is distin-

guishable, and will sometimes say that any two such computers C1 and C2 “are distinguishable

from each other”. We will also say that {Ci} is a maximal(pairwise) distinguishable set if there

are no physical computers C∉ {Ci} such that C∪ {Ci} is a (pairwise) distinguishable set.

2. THE UNCOMPUTABILITY OF THE FUTURE

i) The impossibility of posing arbitrary questions to a computer

Our first result does not even concern the accuracy of prediction. It simply states that fo

pair of physical computers there arealwaysbinary-valued questions about the state of the u

verse that cannot even be posed to at least one of those physical computers. In particular

true if the second computer is a copy of the first one, or even if it is the same as the first one

result does not rely on input-distinguishability of the two computers — a property that obvio

does not describe the relationship between a computer and itself.) This impossibility hol

matter what the cardinality of the set of questions that can be posed to the computers (i.e., n

ter what the cardinality of {IN} and/or Q). It is also true no matter how powerful the compu

(and in particular holds even if the computers are more powerful than a Turing Machine), wh

the computers are analog or digital, whether the universe is classical or quantum-mech
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whether or not the computers are quantum computers, and even whether the computers are

to physical constraints like the speed of light. In addition the result does not rely on ch

dynamics in any manner. All that is required is that the universe contain two (perhaps iden

perhaps wildly different) physical computers.

Theorem 1: Consider any pair of physical computers {Ci : i = 1, 2}. Either∃ finite intelligibility

set F2 for C2 such that C2 is not intelligible to C1 with respect to F2, and/or∃ finite intelligibility

set F1 for C1 such that C1 is not intelligible to C2 with respect to F1.

Proof: Hypothesize that the theorem is false. Then C1 and C2 are mutually intelligible∀ finite F1

and F2. Now the set of all finite F2 includes any and all intelligibility functions for C2, i.e., any

and all functions taking^u to a bit whose value is set by the value OUT2( ^u ). The set of those

functions can be bijectively mapped to the power set 2{OUT2} . So F2 ⊆ Q1 ⇒ o(Q1) ≥ o(2{OUT2} ).

However o({OUT2}) ≥ o(Q2), since {OUT2} contains all possible specifications of a q2 ∈ Q2.

Therefore o(Q1) ≥ o(2Q2
). But it is always true that o(2A) > o(A) for any set A, which means in

particular that o(2Q
2
) > o(Q2). Accordingly, o(Q1) > o(Q2). Similarly though, o(Q2) > o(Q1).

Therefore o(Q1) > o(Q1), which is impossible.QED.

Ultimately, Thm. 1 holds due to our requiring that our physical computer be capabl

answering more than one kind of question about the future state of the universe. To satis

requirement q cannot be pre-fixed. (In conventional computation, it is specified in the comp

input.) But precisely because q is not fixed, for the computer’s output ofα to be meaningful it

must be accompanied by specification of q; the computer’s output must be a well-defined r

in ^U. It is this need to specify q as well asα, ultimately, which means that one cannot have tw

physical computers both capable of being asked arbitrary questions concerning the output

other.

Thm. 1 reflects the fact that while we do not want to have C’s output partition “rigged ahea
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time” in favor of some single question, we also cannot require too much flexibility of our c

puter. It is necessary to balance these two considerations. Before analyzing prediction

future, to circumvent Thm. 1 we must define a restricted kind of intelligibility set to which Thm

does not apply. This is a set of functions whose value does not depend on the question com

of OUT, only on the answer component. Intuitively, restricting ourselves to these kinds of in

gibility sets means we are only requiring that the predicted partitionlabel of one physical com-

puter be directly readable on the other computer’s input, not that the full partition of the

computer’s question also be directly readable.

Recall that for any f that is an intelligibility function for (the output partition of) some co

puter C,∀ û, û' ∈ Û, OUT( û ) = OUT( û' ) implies that f(û ) = f( û' ). So for such an f, the joint

condition [OUTq( û ) = OUTq( û' )] ^ [OUTα( û ) = OUTα( û' )] implies that f(û ) = f( û' ). We

consider f’s that obey weaker conditions:

Definition 6: An intelligibility function f for an output partition OUT(.) isquestion-independent

iff ∀ û, û' ∈ Û:

OUTp( û )  =  OUTp( û' )

⇒

     f( û ) = f( û' ).

An intelligibility set as a whole is question-independent if all its elements are.

We write C1 > C2 (or equivalently C2 < C1) and say simply that C2 is (weakly)predictableto

C1 (or equivalently that C1 can predictC2) if C2 is weakly predictable to C1 for all question-inde-

pendent finite intelligibility sets for C2.

Similarly, from now on we will say that C2 is intelligible to C1 without specification of an

intelligibility set if C2 is intelligible to C1 with respect to all question-independent finite intellig

bility sets for C2.

Intuitively, f is question-independent if its value does not vary with q among any set of q a
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which share the same A(q). As an example, say our physical computer is a conventional

workstation. Have a certain section of the workstation’s RAM be designated the “output sec

of that workstation. That output section is further divided into a “question subsection” design

(i.e., “containing”) a q, and an “answer subsection” designating anα. Say that for all q that can be

designated by the question subsection A(q) is a single bit, i.e., we are only interested in b

valued questions. Then for a question-independent f, the value of f can only depend on w

the answer subsection contains a 0 or a 1. It cannot vary with the contents of the question s

tion.

As a formal example of question-independent intelligibility, say our computer has quest

for which A(q) =B, questions q for which A(q) = {0}, and q for which A(q) = {1}, but no others

Then there are four distinct subsets of^U, which mutually cover^U, defined by the four equations

OUTp(
^u ) = (B, 1), OUTp(

^u ) = (B, 0), OUTp(
^u ) = ({1}, 1), and OUTp(

^u ) = ({0}, 0). (The full

partition OUT(.) is a refinement of this 4-way partition, whereas this 4-way partition need

have no relation with the partitions making up each q in Q.) So a question-independent int

bility function of our computer is anyB-valued function of which of these four subsets a partic

lar ^u falls into.

In terms of the first of the motivations we introduced for requiring intelligibility, requirin

question-independent intelligibility means we only require each computer’sanswerto be readily

intelligible to the other one. We are willing to forego having the question that each comp

thinks it’s answering also be readily intelligible to the other one. Alternatively, we can defi

“partial computer” as a modified kind of computer whose variable OUT is only A(q) andα (rather

than q andα). Intelligibility in the sense originally defined, applied to a partial computer,

exactly equivalent to applying question-independent intelligibility to a full computer. In part

lar, the set of all question-independent intelligibility functions of any output partition OUT

equals the set of all intelligibility functions of the partial computer output partition OUTp(.).

Thm. 1 does not hold if we restrict attention to question-independent intelligibility sets. A

example, both of our computers could have their output answer subsections be a single b
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both could have their Q contain all four Boolean questions about the state of the other comp

output answer bit. (Those are the following functions from^u ∈ Û → B: Is u such that the other

computer’s output bit is 1? 0? 1 and/or 0? Neither 1 nor 0?) So the Q of both computers co

all possible question-independent intelligibility sets for the other computer.

The following example establishes that there are pairs of input-distinguishable physical

puters {C1, C2} in which C2 is predictable to C1:

Example 2: Q2 consists of a single question, one which is a binary partition of^U so that

A(OUT2
q(

^u )) = B always. Since OUT2(.) is surjective, the image of^U under OUT2α(.) is all of

B. Q1 has four elements given by the four logical functions of the bit OUT2
α( ^u ). (Note these are

the four intelligibility functions for C2.) Have IN1(.) = OUT1
q(.), so that {IN1} contains four ele-

ments corresponding to those four possible questions concerning OUT2
α. Next, have OUT1α( ^u )

= [OUT1
q(

^u )]( ^u ) ∀ ^u ∈ ^U. Then for any of the four intelligibility functions for C2, q, ∃ IN1 ∈

{IN 1} such that IN1( ^u ) = IN1 ⇒ [A(OUT1
q( û )) = A(q)] ^ [OUT1

α( û ) = q( û )]; simply

choose IN1 = q, so that IN1( ^u ) = IN1 ⇒ OUT1
q(

^u ) = q. Finally, to ensure distinguishability, if

there are multiple IN2 values, have each one occur for at least one^u in each of the subregions

of ^U given by the partition IN1(.).

To ensure surjectivity of OUT1(.), we could have IN1(.) subdivide each of the two sets (one s

for each value of OUT2α) { ^u ∈ ^U : OUT2
α( ^u ) = OUT2

α} into four non-empty subregions, one

for each IN1 value. So (IN1( ^u ), OUT2
α( ^u )) are two-dimensional coordinates of a set of disjoi

regions that form a rectangular array covering
^
U. This means that^u → (IN1( ^u ), OUT2

α( ^u )) is

surjective onto {IN1} × {OUT2
α}, so that for any OUT1α and intelligibility function for C2, q,

there is always a value of IN1 that both induces the correct prediction for that function q and

consistent with that OUT2α.

The following variant of Ex. 2 establishes that we could have yet another computer C3 that

predicts C2 but that is also distinguishable from C1:
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Example 2': Have Q3 = Q1, {IN 3} = {IN 1}, OUT3
q(.) = IN3(.), OUT3

α( ^u ) = [OUT3
q(

^u )]( ^u )

∀ ^u ∈ ^U, and have IN3(.) subdivide IN1(.) so that all four values of IN3 can occur with each value

of IN1. In general, as we vary over all^u ∈ ^U and therefore over all (IN1, IN3) pairs, the pair of

intelligibility function that C1 is predicting will separately vary from those that C3 is predicting, in

such a way that all 24 pairs of intelligibility functions for C2 are answered correctly for some^u

∈ ^U.

In addition, we can have a computer C4, distinguishable from both C1 and C2, where C4 > C1,

so that C4 > C1 > C2. We can do this either with C4 > C2 or not, as the following variant of Ex. 2

demonstrates:

Example 2": Have OUT4q(.) = IN4(.), OUT4
α( ^u ) = [OUT4

q(
^u )]( ^u ) ∀ ^u ∈ ^U, and {IN4} =

{OUT4
q} equals the set of all 24 question-independent intelligibility functions for C1. (There are

four possible OUT1p: {({0}, 0), ({1}, 1), ( B, 0), (B, 1)}.) Ensure surjectivity of OUT4(.) by hav-

ing each region of constant OUT4
q(

^u ) overlap each region of constant OUT1
p(

^u ).This estab-

lishes that C4 > C1. Distinguishability would then hold if IN4(.) subdivides IN1(.) so that all 16

values of IN4 can occur with each value of IN1.

In this setup, C2 may or may not be predictable to C4. To see how it may not be, consider th

case where {IN2} is a single element (so distinguishability with C2 is never an issue). Have IN4(.)

be a refinement of OUT2α(.), in that each IN4 value can only occur with one or the other of th

two OUT2
α values. So each IN4 value delineates a “horizontal strip” of constant OUT2

α( ^u ), run-

ning across all four values of IN1( ^u ). (Since IN1( ^u ) = OUT1
q(

^u ), and OUT1α( ^u ) =

(OUT1
q(

^u ))( ^u ), OUT1
α( ^u ) = (IN1( ^u ))( ^u ), so specifying the value of IN1( ^u ) specifies

OUT1
p(

^u ), and each strip crosses all four OUT1
p values, as was stipulated above.)

Now choose the strip with A(OUT4q(
^u )) = A(IN4( ^u )) = {0} to have coordinate OUT2α( ^u )

= 1, and the strip with A(OUT4q(
^u )) = {1} to have coordinate OUT2α( ^u ) = 0. In theremaining
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fourteen strips, OUT4α( ^u ) is not constant, and therefore is not a single-valued intelligibil

function of the associated (constant) value of OUT2
p(

^u ). In both of those two strips though

OUT4
α( ^u ) is the opposite of OUT2α( ^u ). So no IN4 value induces the identity question-indepe

dent intelligibility function for C2: ^u → ΟUT2
α( ^u ), i.e., no IN4 induces OUT4p(

^u ) = (B,

OUT2
α( ^u )). Accordingly, C4 does not predict C2.

In other instances though, both C2 and C1 are predictable to C4. To have this we need only

subdivide {IN4} and {OUT4} into two portions, ({IN4} A, {OUT4} A), and ({IN4} B, {OUT4} B),

which divide ^U in two. The first of these portions is used for predictions concerning C2, as in Ex.

2; each region of constant IN4( ^u ) is a subset of a region of constant IN1( ^u ) overlapping both

OUT2
α( ^u ). The second is used for predictions concerning C1, as just above. It consists of hori

zontal strips extending over that part of^U not taken up by the regions with IN4( ^u ) ∈ {IN 4} A. So

{IN 4} A = {OUT4
q} A contains four elements, and {IN4} B = {OUT4

q} B contains sixteen, which

means that {IN} = {OUT} contains twenty elements, all told. Distinguishability is ensured

having IN4 take on all its possible values within any subset of^U over which both IN1(.) and IN2(.)

are constant.

ii) The impossibility of assuredly correct prediction

Even if we can pose all the questions in some set to a computer, that says nothing

whether by appropriate choice of input the computer can always be assured of correctly an

ing any question from that set. In fact, even if we restrict attention to question-independent in

gibility sets, no physical computer can be assuredly correct in its predictions concernin

future.

Whereas the impossibility expressed by Thm. 1 follows from cardinality arguments an

power set nature of intelligibility sets, the impossibility of assuredly correct prediction follo

from the presence of the negation operator in a (question-independent) intelligibility set. A

example of the logic underlying the proof, consider a pair of computers predicting the future,

of whose output answer subsections are binary. Have one of the two computers predict the
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output bit, whereas that other computer predicts the negation of the first one’s output bit.

both computers’ output calculations must halt byτ, they will contradict each other when the pre

diction time arrives. Therefore they cannot both be correct in their predictions.

To formalize this, first note that for any partitionπ containing at least two elements, ther

exists an intelligibility function f forπ with A(f) = B, an intelligibility function f with A(f) = {1},

and an intelligibility function f with A(f) = {0}. By exploiting the surjectivity of output partitions

we can extend this result to concern such partitions. This is formally established in the follo

lemma, which holds whether or not we assume partitions are binary:

Lemma 1: Consider a physical computer C1. If ∃ any output partition OUT2 that is intelligible to

C1, then∃ q1 ∈ Q1 such that A(q1) = B, a q1 ∈ Q1 such that A(q1) = {0}, and a q1 ∈ Q1 such that

A(q1) = {1}.

Proof: Since {OUT2} is non-empty, {OUT2
q} is non-empty. Pick some q* ∈ {OUT2

q} having at

least two elements. (By definition of physical computer, there is at least one such q*.) Construct

any binary-valued function f*2 of α ∈ A(q*) such that there exists at least oneα for which f*2(α)

= 0 and at least one for which f*2(α) = 1. Define an associated function f*2( û ) = f*2(OUT2
α( û ))

if A(OUT2
q( û )) = A(q*), 0 otherwise. By the surjectivity of OUT2(.), ∀ α ∈ A(q*), ∃ û such that

both OUT2
q( û ) = q* and OUT2α( û ) = α. Therefore∃ û such that f*2( û ) = 1, and∃ û such that

f*2( û ) = 0.

This establishes, by construction, that there is a question-independent intelligibility fun

for C2 that takes on both the value 1 and the value 0, f*2. So by our hypothesis that C2 is intelligi-

ble to C1 with respect to any question-independent intelligibility function for C2, we know that f*2

∈ Q1. Moreover, viewed as a question, A(f*2) = B. So, we have established that Q1 contains a

binary valued function.

Next, note that the function̂u ∈ Û → 1 is always a question-independent intelligibility func

tion for C2, as is the function̂u ∈ Û → 0. Again using surjectivity, we see that A for these tw
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functions are {1} and {0}, respectively.QED.

We can now establish our central theorem:

Theorem 2: Consider any pair of distinguishable physical computers {Ci : i = 1, 2}. It is not pos-

sible that both C1 > C2 and C1 < C2.

Proof: Hypothesize that the theorem is false. Then C1 and C2 are mutually predictable for all

pairs of question-independent intelligibility functions (one function for each computer),

therefore mutually intelligible for them as well. Therefore Lemma 1 applies. Using the surje

ity of OUT2(.), this means that∃ q2 ∈ Q2 such that A(q2) = B and such that there both exists aû

∈ Û such that OUT2( û ) = (q2, 0) and âu ∈ Û such that OUT2( û ) = (q2, 1). By similar reason-

ing, ∃ q1 ∈ Q1 such that A(q1) = B, and such that there both exists aû ∈ Û such that OUT1( û ) =

(q1, 0) and âu ∈ Û such that OUT1( û ) = (q1, 1).

Consider the function of̂u ∈ Û whose value is 1 if OUT2p( û ) = (B, 1), 0 otherwise. Like q1,

this is a question-independent intelligibility function for C2, and by our argument just above, w

know it is surjective ontoB. Again using mutual intelligibility, this intelligibility function is a q∈

Q1, q*1. Intuitively, this q for C1 is just the bit of C2’s output answer, for those cases where th

answer is binary. (Our proving surjectivity establishes that there actually are such cases wh

space of answers is binary, and furthermore that among such cases both output answers

Similarly, ∃ q ∈ Q2, q*2, such that q*2( û ) = 1 if OUT1
p( û ) = (B, 0), 1 otherwise. Intuitively, this

q for C2 is just the negation of the bit of C1’s output answer.

By hypothesis our computers are mutually predictable with respect to any two finite inte

bility sets. Therefore they are mutually predictable with respect to the two (single-element)

ligibility sets for C2 and C1, q*1, and q*2, respectively. Therefore∃ IN2 such that IN2( û ) = IN2

implies that OUT2p( û ) = (B, q*2( û )). Similarly, ∃ IN1 such that IN1( û ) = IN1 implies that

OUT1
p( û ) = (B, q*1( û )). But since our computers are input-distinguishable,∃ û for which both
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IN2( û ) = IN2 and IN1( û ) = IN1. Therefore∃ û for which A(OUT2
q( û )) = A(OUT1

q( û )) = B,

OUT2
α( û ) = q*2( û ), and OUT1α( û ) = q*1( û ).

Plugging in, for that̂u, A(OUT2
q( û )) = B, and OUT2α( û ) = 1 if OUT1

p( û ) = (B, 0), 1 oth-

erwise. Similarly, A(OUT1q( û )) = B, and OUT1α( û ) = 1 if OUT2
p( û ) = (B, 1), 0 otherwise.

Plugging in again, we have OUT2
α( û ) = 1 if OUT2

α( û ) ≠ 1, 0 otherwise. This contradiction

establishes that our hypothesis is wrong, which establishes the theorem.QED.

Restating it, Thm. 2 says that either∃ finite question-independent intelligibility set for C1, F1,

such that C1 is not predictable to C2 with respect to F1, and/or∃ finite question-independent intel

ligibility set for C2, F2, such that C2 is not predictable to C1 with respect to F2.

Thm. 2 holds no matter how large and powerful our computers are; it even holds if the “p

ical system underlying” one or both of our computers is the whole universe. It also holds if ins

C2 is the rest of the physical universe external to C1. As a particular instance of this latter case, th

theorem holds even if C1 and C2 are physically isolated from each other∀ t > 0. (Results similar

to Thm. 2 that rely on physical coupling between the computers are presented in [30].)

Rather than viewing it as imposing limits on computers, Thm. 2 can instead be viewe

imposing limits on the computational capabilities of the universe as a whole. In this perspe

that theorem establishes that the universe cannot support parallel computation in which

nodes are sufficiently powerful to correctly predict each other’s behavior.

iii) Implications of the impossibility of assuredly correct prediction for a single computer

Let C be a computer supposedly capable of correctly predicting the future of any system

information concerning the initial state of S is provided to C, as in example 1 above. Assum

C is not so powerful that the universe is incapable of supporting a copy of C in addition to

original. (This is certainly true of any C conceivably built by humans.) Have S be such a co

C. We assume that for any pair of t = 0 input values, there is at least one world-line of the uni

in which C’s input is one of those values and the other value constitutes the input of C’s copy
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we have input-distinguishability).

Applying Thm. 1 to our two computers, we see that there is a finite intelligibility set that is

intelligible to C, i.e., there are questions concerning an S that cannot even be posed to C.

formally, there is either such a set for C or for its copy, S.) In addition, by Thm. 2, there is a fi

question-independent (and therefore potentially pose-able) intelligibility set concerning S t

not predictable to C. In other words, there must be a question-independent intelligibility fun

concerning S that C predicts incorrectly, no matter what the input to C (assuming the functio

even be posed to C at all).

The binary partition over UT induced by this unpredictable intelligibility function constitutes

question concerning the time T state of S. In addition every one of the set of potential inputs

corresponds to a subset of U0, and therefore corresponds to a subset of the possible states o

“input section” at time 0. (In Ex. 1, IN(.) is set up so that every element in {IN} correspond

one and only one state of C’s input section at time 0.) Similarly, every output of C correspon

a subset of Uτ and therefore a subset of the possible states of C’s “output section” at timτ.

Accordingly, our result means that there is no input to C at time 0 that will result in C’s outp

time τ having the correct answer to our question concerning the time T state of S. For 0 <τ < T,

this constitutes a formal proof that no computer can predict the future faster than it occurs

more precisely, that the universe cannot support more than one such computer.) As men

previously, the result also holds for T < 0 however, inwhich case it denies the possibility of assu

edly correct prediction of the past.

While these results hold if C and S are isolated from one another∀ t > 0, they also hold if C

and S are coupled at such times. Indeed, they hold no matter what the form of such coupli

in particular, we can have S be a copy of C that is coupled with the original by having that ori

“observe” the copy’s output section. Doing this, our result establishes the impossibility of a d

C that can take specification of any characteristic of the universe as input, observe the va

that characteristic, then report that value and have the value still be true at the time of repo

(Note that when a computer is used for observation, its input will in general not uniquely fi
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output, unlike the case with prediction discussed in Ex. 1.) This impossibility holds indepen

of considerations of light-cones and the like, and in fact holds just as well in a universe with c∞

as it does in ours. (Alternatively, the time at which the characteristic is to be observed can be

ified in the computer’s input, and therefore can be far enough into the future so that C’s light

can intersect with that of the characteristic.) In all this, Thm. 2 establishes the impossibility

general-purpose observation apparatus.

Moreover, there is nothing in the math that forces C to play a “passive observational ro

the coupling with S. So we can just as well view Thm. 2 as establishing the impossibility o

apparatus capable of ensuring that there is no discrepancy between the time T value in som

ical computer C’s output section and an associated characteristic of a system S externa

There is no such thing as an infallible general-purpose controller.

Whether used for prediction, observation, or control, one can “start” our computer at any

beforet = 0 (i.e., give the computer a potentially semi-infinite “running start”) and our impossi

ity results still hold. In addition, it is worth noting that in the context of prediction or observat

these impossibility results hold even if one tries to have the input to the computer explicitly

tains the correct value of the prediction or observation. (Since the universe is single-va

deterministic, such a value must exist.) Impossibility also obtains if the input is stochastic (si

holds for each input value individually). Similarly, although we are primarily interested in co

puters that run programs which were specifically designed to try to achieve our computa

task, nothing in the theorem requires this.Whatever the program, our result shows that the com

puter it runs on must have output which never equals the correct answer.

Thm. 2 applies even if we consider human beings, perhaps individually or in a group, pe

using physical computational aids, perhaps building special-purpose physical devices, to

“underlying physical computers”. Even in a classical, non-chaotic, finite universe, there cann

two scientists both of whom are infallible in their calculations (or even their observations)

cerning the universe. This is even true if we accept Penrose’s thesis that somehow quantum

ity imbues human beings with extraordinary computational powers. No restrictions are set
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theorem on how the computer operates, and there are no explicit assumptions about the co

tional power of either the computer or of the universe. Indeed, even if the computer is infin

fast and/or dense, or powerful enough to solve the Halting Problem, the theorem still holds

Impossibility results that are in some senses even stronger than those associated with

hold when we do not restrict ourselves to distinguishable computers, as we do in Thm. 2

example, some of those results establish the impossibility of a computer C’s assuredly pred

even if C is so powerful that the universe is not capable of having more than one copy of C

the discussion in the next paper of prediction complexity.

FUTURE WORK AND DISCUSSION

Any results concerning physical computation should, at a minimum, apply to the comp

lying on a scientist’s desk. However that computer is governed by the mathematics of deter

tic finite automata, not that of Turing machines. In particular, the impossibility results concer

Turing machines rely on infinite structures that do not exists in any computer on a scientist’s

Accordingly, it is hard to see why those results should be relevant to a general theory of ph

computers.

On the other hand, when one carefully analyzes actual computers that perform calcul

concerning the physical world, one uncovers a mathematical structure governing those com

that is replete with its own impossibility results. While much of that structure parallels Tu

machine theory, much of it has no direct analogue in that theory. For example, it has no ne

structures like tapes, moveable heads, internal states, read/write capabilities, and the like, n

which have any obvious importance to the laws of quantum mechanics and general rela

Indeed, when the underlying concepts are stripped down to their essentials, one does no

need to identify a “computer” with a particular localized region of space-time, never mind

with heads and the like. In place of all those concepts, one has several partitions over the sp

all worldlines of the universe. Those partitions constitutes a computer’s inputs, the question
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addressing, and its outputs. The impossibility results of physical computation concern the re

of those partitions. Computers in the conventional, space-time localized sense (the box o

desk) are simply special examples, with lots of extra restrictions that are unnecessary in the

lying mathematics; the general definition of a “physical computer” has no such restrictions.

One can use this definition of a physical computer to establish many restrictions on w

and is not possible to compute concerning the physical world. The first result is that there c

be a computer to which one can even pose all possible questions concerning the physical w

light of this result attention is restricted to a subset of questions, all of whose members can

ally be posed to physical computers. Consideration is then focussed on computers that are

powerful as to be unique, i.e., computers that can exist in multiple renditions in the physica

verse. It is shown that no such computer can correctly answer all of the computational que

concerning the physical universe that can be posed to it.

This central result has many implications. The first is that it is impossible for a comput

take a state of any system as an input, and then always correctly predict the future state of th

tem before it occurs. There must be mistakes made. Loosely speaking, this means that L

was wrong: even if the universe were a giant clock, he would not be able to reliably predi

future state before it occurred, no matter how smart he was. Phrased differently, regardl

noise levels and the dimensions and other characteristics of the underlying attractors of the

cal dynamics of various, there cannot be a time-series prediction algorithm [8] that is alway

rect in its prediction of the future state of such systems.

The central result follows solely from the relations among the partitions that jointly spe

any physical computer. In particular, it does not rely on physical properties of the universe, li

quantum nature, the finiteness of the speed of light, the chaotic state of its subcomponents

like. Nor does it make any assumptions concerning a localized physical that may underl

physical computer, the Chomsky hierarchy characterization of the computer, or the like. On

exploit this breadth of the definition of “computer” to extend the central result to address m

other scenarios besides time-series prediction. In particular, that definition places no restr

on whether the computer and the system it is predicting are physically coupled. Accordingly

central result means that one cannot build a general-purpose observation device that alwa
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rectly answers an observational question concerning an arbitrary physical system. Sim

because of the freedom to have the “computer” be coupled to the external system, the c

result means that one cannot build a general-purpose infallible control device, i.e., one a

induce a desired state in any specified physical system. These two corollaries of the centra

holds independent of concerns about causal relations and light cones; it holds even for an

speed of light.

The central result serves as one of the foundations for a mathematics of how sets of com

can be related to one another. For example, say we loosen the assumption that any compu

can exist in our universe can exist in more than rendition. Then the central result can be u

establish that the computability relationship among all computers constitutes a directed a

graph. In addition, there is at most one computer that can correctly compute arbitrary que

concerning all others, i.e., that can infallibly predict/observe/control all others. In addition to

lyzing the mathematics associated with such “god computers”, one can investigate analog

the Halting theorem of conventional computer science. That investigation results in a natura

plexity measure, one that is analogous to algorithmic information complexity. Unlike algorith

information complexity however, the physical computation analogue is uniquely defined, wi

freedom analogous to that in algorithmic information complexity of varying the underlying

versal Turing machine. All these issues and many others are discussed in the second of this

papers.

Future work related to the central result includes investigating the following issues:

i) How must the definitions and associated results be modified for analog computers (so th

is concerned with amounts of error rather than whether there is an error)? What about if one

culating the future state of a stochastic system, i.e., if one is predicting a probability distribut

ii) Are there any modifications to the definitions that would be more appropriate for quantum

tems? If so, how are the ensuing results different for quantum systems? (As an example of

modification, one might want to allow sufficient time between T andτ to not run into difficulties

due to the Heisenberg uncertainty principle.)
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iii) How are the results modified if one is concerned with probabilities of erroneous predic

rather than just worst-case analysis of whether there can possibly be erroneous prediction?

ticular, how must the results be modified if prediction doesn’t involve a bit of whether the

verse’s actual worldline is or isn’t in some particular subset of all such worldlines (a part

element), but instead involves full-blown probability distributions over the full set of all wor

lines?

iv) Find the exact point of failure — which according to (1) and (2) must exist — of the intuit

argument “If the computer is simply a sufficiently large and fast Hamiltonian evolution appr

mator, then it can emulate any finite classical non-chaotic system”.

v) A related issue is whether any time a computer actually tries to perform a computation o

sort invoked in the proofs of (1) and (2) it is forced to a chaotic trajectory, even though evolu

of the combined C-A system in the overall phase space isn’t chaotic (i.e., the region of that

space with positive Lyaponov exponent has measure 0)? Or is it perhaps instead the case

only kinds of computers one might nominate as capable of predicting any external syste

themselves everywhere chaotic? If this were the case, then in both the proof of (1) and of (2

is trying to predict a chaotic system; might that be the answer to the question in (iv) of why t

predictions must be in error? (As an aside, note that if it were the case that only chaotic sy

could conceivably function as universal predictors it would rule out the possibility of 100%

cient error-correcting computers as such universal predictors, since they are designed to

chaotic.)

There are reasons to believe this is not the case. For example, the results in this pape

simply say that the computer is unreliable, sometimes getting the correct answer, sometim

wrong answer. Rather those results say that there is a scenario where the computer isalways

wrong. This makes it hard to see how the “explanation” for these results could lie in chao
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quantum mechanical properties of the computers - one would expect such properties to give

liability, not reliable incorrectness.

vi) As mentioned in the introduction, there is a large body of work showing how to embed T

in physical systems. One topic for future work is following an analogous program in the do

of physical computation, for example by investigating what physical systems support cop

any element of various sets of physical computers.

FOOTNOTES

[1] To “remember”, in the present, an event from the past, formally means “predicting” that e

accurately (i.e., retrodicting the event), using only information from the present. Such retrod

relies crucially on the second law. Hence, the temporal asymmetry of the second law caus

temporal asymmetry of memory (we remember the past, not the future). That asymmetry of

ory in turn causes the temporal asymmetry of the psychological arrow of time. “Memory sys

theory” refers to the associated physics of retrodiction; it is the thermodynamic analysis o

tems for transferring information from the past to the present. See [28].
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